Y2 = Join[ixs2, ics2, {A0i, A0i1}]
K2 = Table[0, {i, 1, 4 k3 + 2}, {j, 1, 4 k3 + 2}];
K2[[1, 1]] = 2;
K2[[1, 2]] = -2;
K2[[1, k3 + 1]] = -1;
K2[[1, k3 + 2]] = -2;
K2[[1, k3 + 3]] = 3;
K2[[1, 3 k3 + 1]] = -2;
K2[[1, 3 k3 + 2]] = 2;
For[i = 2, i <= 8, i++,
K2[[i, i]] = 2;
K2[[i, i + 1]] = -2;
K2[[i, k3 + i - 1]] = i - 1;
K2[[i, k3 + i]] = -i;
K2[[i, k3 + i + 1]] = -(i + 1);
K2[[i, k3 + i + 2]] = i + 2;
K2[[i, 3 k3 + i]] = -2;
K2[[i, 3 k3 + i + 1]] = 2;]
K2[[k3 - 1, k3 - 1]] = 2;
K2[[k3 - 1, k3]] = -2;
K2[[k3 - 1, 2 k3 - 2]] = 8;
K2[[k3 - 1, 2 k3 - 1]] = -9;
K2[[k3 - 1, 2 k3]] = -10;
K2[[k3 - 1, 4 k3 - 1]] = -2;
K2[[k3 - 1, 4 k3]] = 2;
K2[[k3, k3]] = 2;
K2[[k3, 2 k3 - 1]] = 9;
K2[[k3, 2 k3]] = -10;
K2[[k3, 4 k3]] = -2;
K2[[k3 + 1, 1]] = 1;
K2[[k3 + 1, 2]] = -2;
K2[[k3 + 1, k3 + 1]] = 3;
K2[[k3 + 1, 2 k3 + 1]] = -2;
K2[[k3 + 1, 4 k3 + 1]] = -2;
K2[[k3 + 1, 4 k3 + 2]] = 2;
K2[[k3 + 2, 1]] = 1;
K2[[k3 + 2, 2]] = 2;
K2[[k3 + 2, 3]] = -3;
K2[[k3 + 2, k3 + 1]] = -2;
K2[[k3 + 2, k3 + 2]] = 2;
K2[[k3 + 2, 2 k3 + 1]] = 2;
K2[[k3 + 2, 2 k3 + 2]] = -2;
For[i = 3, i <= 9, i++,
K2[[k3 + i, i - 2]] = -( i - 2);
K2[[k3 + i, i - 1]] = i - 1;
K2[[k3 + i, i]] = i;
K2[[k3 + i, i + 1]] = -(i + 1);
K2[[k3 + i, k3 + i - 1]] = -2;
K2[[k3 + i, k3 + i]] = 2;
K2[[k3 + i, 2 k3 + i - 1]] = 2;
K2[[k3 + i, 2 k3 + i]] = -2]
K2[[2 k3, k3 - 2]] = -8;
K2[[2 k3, k3 - 1]] = 9;
K2[[2 k3, k3]] = 10;
K2[[2 k3, 2 k3 - 1]] = -2;
K2[[2 k3, 2 k3]] = 2;
K2[[2 k3, 3 k3 - 1]] = 2;
K2[[2 k3, 3 k3]] = -2;
K2[[2 k3 + 1, 1]] = 2 \[Alpha]^-1;
K2[[2 k3 + 1, 2]] = -2 \[Alpha]^-1;
K2[[2 k3 + 1, k3 + 1]] = \[Alpha]^3 - 2 \[Alpha];
K2[[2 k3 + 1, k3 + 2]] = 2 \[Alpha] - 4 \[Alpha]^3;
K2[[2 k3 + 1, k3 + 3]] = 3 \[Alpha]^3;
K2[[2 k3 + 1, 3 k3 + 1]] = -2 \[Alpha];
K2[[2 k3 + 1, 3 k3 + 2]] = 2 \[Alpha]^3;
For[i = 2, i <= 8, i++,
K2[[2 k3 + i, i]] = 2 \[Alpha]^-i;
K2[[2 k3 + i, i + 1]] = -2 \[Alpha]^-i;
K2[[2 k3 + i, k3 + i - 1]] = (i - 1) \[Alpha]^i;
K2[[2 k3 + i, k3 + i]] = i (\[Alpha]^2 - 2) \[Alpha]^i;
K2[[2 k3 + i, k3 + i + 1]] = -(i + 1) (2 \[Alpha]^2 - 1) \[Alpha]^i;
K2[[2 k3 + i, k3 + i + 2]] = (i + 2) \[Alpha]^(i + 2);
K2[[2 k3 + i, 3 k3 + i]] = -2 \[Alpha]^i;
K2[[2 k3 + i, 3 k3 + i + 1]] = 2 \[Alpha]^(i + 2);]
K2[[3 k3 - 1, k3 - 1]] = 2 \[Alpha]^-9;
K2[[3 k3 - 1, k3]] = -2 \[Alpha]^-9;
K2[[3 k3 - 1, 2 k3 - 2]] = 8 \[Alpha]^9;
K2[[3 k3 - 1, 2 k3 - 1]] = 9 (\[Alpha]^2 - 2) \[Alpha]^9;
K2[[3 k3 - 1, 2 k3]] = -10 (2 \[Alpha]^2 - 1) \[Alpha]^9;
K2[[3 k3 - 1, 4 k3 - 1]] = -2 \[Alpha]^9;
K2[[3 k3 - 1, 4 k3]] = 2 \[Alpha]^11;
K2[[3 k3, k3]] = 2 \[Alpha]^-10;
K2[[3 k3, 2 k3 - 1]] = 9 \[Alpha]^10;
K2[[3 k3, 2 k3]] = 10 (\[Alpha]^2 - 2) \[Alpha]^10;
K2[[3 k3, 4 k3]] = -2 \[Alpha]^10;
K2[[3 k3 + 1, 1]] = -\[Alpha] + 2 \[Alpha]^-1;
K2[[3 k3 + 1, 2]] = -2 \[Alpha]^-1;
K2[[3 k3 + 1, k3 + 1]] = 3 \[Alpha];
K2[[3 k3 + 1, 2 k3 + 1]] = -2 \[Alpha]^-1;
K2[[3 k3 + 1, 4 k3 + 1]] = -2 \[Alpha];
K2[[3 k3 + 1, 4 k3 + 2]] = 2 \[Alpha];
K2[[3 k3 + 2, 1]] = 2 - \[Alpha]^-2;
K2[[3 k3 + 2, 2]] = -2 + 4 \[Alpha]^-2;
K2[[3 k3 + 2, 3]] = -3 \[Alpha]^-2;
K2[[3 k3 + 2, k3 + 1]] = -2 \[Alpha]^2;
K2[[3 k3 + 2, k3 + 2]] = 2 \[Alpha]^2;
K2[[3 k3 + 2, 2 k3 + 1]] = 2;
K2[[3 k3 + 2, 2 k3 + 2]] = -2 \[Alpha]^-2;
For[i = 3, i <= 9, i++,
K2[[3 k3 + i, i - 2]] = -(i - 2) \[Alpha]^(-i + 2);
K2[[3 k3 + i, i - 1]] = -(i - 1) \[Alpha]^-i +
2 (i - 1) \[Alpha]^(-i + 2);
K2[[3 k3 + i, i]] = -i \[Alpha]^(-i + 2) + 2 i \[Alpha]^-i;
K2[[3 k3 + i, i + 1]] = -(i + 1) \[Alpha]^-i;
K2[[3 k3 + i, k3 + i - 1]] = -2 \[Alpha]^i;
K2[[3 k3 + i, k3 + i]] = 2 \[Alpha]^i;
K2[[3 k3 + i, 2 k3 + i - 1]] = 2 \[Alpha]^(-i + 2);
K2[[3 k3 + i, 2 k3 + i]] = -2 \[Alpha]^-i]
K2[[4 k3, k3 - 2]] = -8 \[Alpha]^-8;
K2[[4 k3, k3 - 1]] = -9 \[Alpha]^-10 + 18 \[Alpha]^-8;
K2[[4 k3, k3]] = -10 \[Alpha]^-8 + 20 \[Alpha]^-10;
K2[[4 k3, 2 k3 - 1]] = -2 \[Alpha]^10;
K2[[4 k3, 2 k3]] = 2 \[Alpha]^10;
K2[[4 k3, 3 k3 - 1]] = 2 \[Alpha]^-8;
K2[[4 k3, 3 k3]] = -2 \[Alpha]^-10;
K2[[4 k3 + 1, 1]] = -3;
K2[[4 k3 + 1, k3 + 1]] = -1;
K2[[4 k3 + 1, k3 + 2]] = 2;
K2[[4 k3 + 1, 3 k3 + 1]] = 2;
K2[[4 k3 + 1, 4 k3 + 1]] = 2;
K2[[4 k3 + 1, 4 k3 + 2]] = -2;
K2[[4 k3 + 2, 1]] = -3;
K2[[4 k3 + 2, k3 + 1]] = -(2 \[Alpha]^2 - 1);
K2[[4 k3 + 2, k3 + 2]] = 2 \[Alpha]^2;
K2[[4 k3 + 2, 3 k3 + 1]] = 2 \[Alpha]^2;
K2[[4 k3 + 2, 4 k3 + 1]] = 2;
K2[[4 k3 + 2, 4 k3 + 2]] = -2;
abcd2 = LinearSolve[K2, Y2]
Dot[K2, abcd2]
K2 = Table[0, {i, 1, 4 k3 + 2}, {j, 1, 4 k3 + 2}];
K2[[1, 1]] = 2;
K2[[1, 2]] = -2;
K2[[1, k3 + 1]] = -1;
K2[[1, k3 + 2]] = -2;
K2[[1, k3 + 3]] = 3;
K2[[1, 3 k3 + 1]] = -2;
K2[[1, 3 k3 + 2]] = 2;
For[i = 2, i <= 8, i++,
K2[[i, i]] = 2;
K2[[i, i + 1]] = -2;
K2[[i, k3 + i - 1]] = i - 1;
K2[[i, k3 + i]] = -i;
K2[[i, k3 + i + 1]] = -(i + 1);
K2[[i, k3 + i + 2]] = i + 2;
K2[[i, 3 k3 + i]] = -2;
K2[[i, 3 k3 + i + 1]] = 2;]
K2[[k3 - 1, k3 - 1]] = 2;
K2[[k3 - 1, k3]] = -2;
K2[[k3 - 1, 2 k3 - 2]] = 8;
K2[[k3 - 1, 2 k3 - 1]] = -9;
K2[[k3 - 1, 2 k3]] = -10;
K2[[k3 - 1, 4 k3 - 1]] = -2;
K2[[k3 - 1, 4 k3]] = 2;
K2[[k3, k3]] = 2;
K2[[k3, 2 k3 - 1]] = 9;
K2[[k3, 2 k3]] = -10;
K2[[k3, 4 k3]] = -2;
K2[[k3 + 1, 1]] = 1;
K2[[k3 + 1, 2]] = -2;
K2[[k3 + 1, k3 + 1]] = 3;
K2[[k3 + 1, 2 k3 + 1]] = -2;
K2[[k3 + 1, 4 k3 + 1]] = -2;
K2[[k3 + 1, 4 k3 + 2]] = 2;
K2[[k3 + 2, 1]] = 1;
K2[[k3 + 2, 2]] = 2;
K2[[k3 + 2, 3]] = -3;
K2[[k3 + 2, k3 + 1]] = -2;
K2[[k3 + 2, k3 + 2]] = 2;
K2[[k3 + 2, 2 k3 + 1]] = 2;
K2[[k3 + 2, 2 k3 + 2]] = -2;
For[i = 3, i <= 9, i++,
K2[[k3 + i, i - 2]] = -( i - 2);
K2[[k3 + i, i - 1]] = i - 1;
K2[[k3 + i, i]] = i;
K2[[k3 + i, i + 1]] = -(i + 1);
K2[[k3 + i, k3 + i - 1]] = -2;
K2[[k3 + i, k3 + i]] = 2;
K2[[k3 + i, 2 k3 + i - 1]] = 2;
K2[[k3 + i, 2 k3 + i]] = -2]
K2[[2 k3, k3 - 2]] = -8;
K2[[2 k3, k3 - 1]] = 9;
K2[[2 k3, k3]] = 10;
K2[[2 k3, 2 k3 - 1]] = -2;
K2[[2 k3, 2 k3]] = 2;
K2[[2 k3, 3 k3 - 1]] = 2;
K2[[2 k3, 3 k3]] = -2;
K2[[2 k3 + 1, 1]] = 2 \[Alpha]^-1;
K2[[2 k3 + 1, 2]] = -2 \[Alpha]^-1;
K2[[2 k3 + 1, k3 + 1]] = \[Alpha]^3 - 2 \[Alpha];
K2[[2 k3 + 1, k3 + 2]] = 2 \[Alpha] - 4 \[Alpha]^3;
K2[[2 k3 + 1, k3 + 3]] = 3 \[Alpha]^3;
K2[[2 k3 + 1, 3 k3 + 1]] = -2 \[Alpha];
K2[[2 k3 + 1, 3 k3 + 2]] = 2 \[Alpha]^3;
For[i = 2, i <= 8, i++,
K2[[2 k3 + i, i]] = 2 \[Alpha]^-i;
K2[[2 k3 + i, i + 1]] = -2 \[Alpha]^-i;
K2[[2 k3 + i, k3 + i - 1]] = (i - 1) \[Alpha]^i;
K2[[2 k3 + i, k3 + i]] = i (\[Alpha]^2 - 2) \[Alpha]^i;
K2[[2 k3 + i, k3 + i + 1]] = -(i + 1) (2 \[Alpha]^2 - 1) \[Alpha]^i;
K2[[2 k3 + i, k3 + i + 2]] = (i + 2) \[Alpha]^(i + 2);
K2[[2 k3 + i, 3 k3 + i]] = -2 \[Alpha]^i;
K2[[2 k3 + i, 3 k3 + i + 1]] = 2 \[Alpha]^(i + 2);]
K2[[3 k3 - 1, k3 - 1]] = 2 \[Alpha]^-9;
K2[[3 k3 - 1, k3]] = -2 \[Alpha]^-9;
K2[[3 k3 - 1, 2 k3 - 2]] = 8 \[Alpha]^9;
K2[[3 k3 - 1, 2 k3 - 1]] = 9 (\[Alpha]^2 - 2) \[Alpha]^9;
K2[[3 k3 - 1, 2 k3]] = -10 (2 \[Alpha]^2 - 1) \[Alpha]^9;
K2[[3 k3 - 1, 4 k3 - 1]] = -2 \[Alpha]^9;
K2[[3 k3 - 1, 4 k3]] = 2 \[Alpha]^11;
K2[[3 k3, k3]] = 2 \[Alpha]^-10;
K2[[3 k3, 2 k3 - 1]] = 9 \[Alpha]^10;
K2[[3 k3, 2 k3]] = 10 (\[Alpha]^2 - 2) \[Alpha]^10;
K2[[3 k3, 4 k3]] = -2 \[Alpha]^10;
K2[[3 k3 + 1, 1]] = -\[Alpha] + 2 \[Alpha]^-1;
K2[[3 k3 + 1, 2]] = -2 \[Alpha]^-1;
K2[[3 k3 + 1, k3 + 1]] = 3 \[Alpha];
K2[[3 k3 + 1, 2 k3 + 1]] = -2 \[Alpha]^-1;
K2[[3 k3 + 1, 4 k3 + 1]] = -2 \[Alpha];
K2[[3 k3 + 1, 4 k3 + 2]] = 2 \[Alpha];
K2[[3 k3 + 2, 1]] = 2 - \[Alpha]^-2;
K2[[3 k3 + 2, 2]] = -2 + 4 \[Alpha]^-2;
K2[[3 k3 + 2, 3]] = -3 \[Alpha]^-2;
K2[[3 k3 + 2, k3 + 1]] = -2 \[Alpha]^2;
K2[[3 k3 + 2, k3 + 2]] = 2 \[Alpha]^2;
K2[[3 k3 + 2, 2 k3 + 1]] = 2;
K2[[3 k3 + 2, 2 k3 + 2]] = -2 \[Alpha]^-2;
For[i = 3, i <= 9, i++,
K2[[3 k3 + i, i - 2]] = -(i - 2) \[Alpha]^(-i + 2);
K2[[3 k3 + i, i - 1]] = -(i - 1) \[Alpha]^-i +
2 (i - 1) \[Alpha]^(-i + 2);
K2[[3 k3 + i, i]] = -i \[Alpha]^(-i + 2) + 2 i \[Alpha]^-i;
K2[[3 k3 + i, i + 1]] = -(i + 1) \[Alpha]^-i;
K2[[3 k3 + i, k3 + i - 1]] = -2 \[Alpha]^i;
K2[[3 k3 + i, k3 + i]] = 2 \[Alpha]^i;
K2[[3 k3 + i, 2 k3 + i - 1]] = 2 \[Alpha]^(-i + 2);
K2[[3 k3 + i, 2 k3 + i]] = -2 \[Alpha]^-i]
K2[[4 k3, k3 - 2]] = -8 \[Alpha]^-8;
K2[[4 k3, k3 - 1]] = -9 \[Alpha]^-10 + 18 \[Alpha]^-8;
K2[[4 k3, k3]] = -10 \[Alpha]^-8 + 20 \[Alpha]^-10;
K2[[4 k3, 2 k3 - 1]] = -2 \[Alpha]^10;
K2[[4 k3, 2 k3]] = 2 \[Alpha]^10;
K2[[4 k3, 3 k3 - 1]] = 2 \[Alpha]^-8;
K2[[4 k3, 3 k3]] = -2 \[Alpha]^-10;
K2[[4 k3 + 1, 1]] = -3;
K2[[4 k3 + 1, k3 + 1]] = -1;
K2[[4 k3 + 1, k3 + 2]] = 2;
K2[[4 k3 + 1, 3 k3 + 1]] = 2;
K2[[4 k3 + 1, 4 k3 + 1]] = 2;
K2[[4 k3 + 1, 4 k3 + 2]] = -2;
K2[[4 k3 + 2, 1]] = -3;
K2[[4 k3 + 2, k3 + 1]] = -(2 \[Alpha]^2 - 1);
K2[[4 k3 + 2, k3 + 2]] = 2 \[Alpha]^2;
K2[[4 k3 + 2, 3 k3 + 1]] = 2 \[Alpha]^2;
K2[[4 k3 + 2, 4 k3 + 1]] = 2;
K2[[4 k3 + 2, 4 k3 + 2]] = -2;
abcd2 = LinearSolve[K2, Y2]
Dot[K2, abcd2]