网页资讯视频图片知道文库贴吧地图采购
进入贴吧全吧搜索

 
 
 
日一二三四五六
       
       
       
       
       
       

签到排名:今日本吧第个签到,

本吧因你更精彩,明天继续来努力!

本吧签到人数:0

一键签到
成为超级会员,使用一键签到
一键签到
本月漏签0次!
0
成为超级会员,赠送8张补签卡
如何使用?
点击日历上漏签日期,即可进行补签。
连续签到:天  累计签到:天
0
超级会员单次开通12个月以上,赠送连续签到卡3张
使用连续签到卡
07月31日漏签0天
mathematica吧 关注:19,843贴子:73,919
  • 看贴

  • 图片

  • 吧主推荐

  • 游戏

  • 9回复贴,共1页
<<返回mathematica吧
>0< 加载中...

【求助】我想求解矩阵方程组,却发现求出来的值乘回去就不对

  • 只看楼主
  • 收藏

  • 回复
  • 千岛湖铝酮分同
  • 安装激活
    1
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
我的目标是求解abcd2的值,对于整个问题我的思路是将函数U拟合成D-10乘x的-10次到D10乘x的10次的和,其中D-10到D10都是实部+虚部,然后将φψ函数也表示为洛朗级数,然后比对每个x的n次方前面的系数来求解问题。我的实部部分求解的没有问题,但是虚部部分算出来就明显不对,希望得到帮助


  • 千岛湖铝酮分同
  • 安装激活
    1
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
Y2 = Join[ixs2, ics2, {A0i, A0i1}]
K2 = Table[0, {i, 1, 4 k3 + 2}, {j, 1, 4 k3 + 2}];
K2[[1, 1]] = 2;
K2[[1, 2]] = -2;
K2[[1, k3 + 1]] = -1;
K2[[1, k3 + 2]] = -2;
K2[[1, k3 + 3]] = 3;
K2[[1, 3 k3 + 1]] = -2;
K2[[1, 3 k3 + 2]] = 2;
For[i = 2, i <= 8, i++,
K2[[i, i]] = 2;
K2[[i, i + 1]] = -2;
K2[[i, k3 + i - 1]] = i - 1;
K2[[i, k3 + i]] = -i;
K2[[i, k3 + i + 1]] = -(i + 1);
K2[[i, k3 + i + 2]] = i + 2;
K2[[i, 3 k3 + i]] = -2;
K2[[i, 3 k3 + i + 1]] = 2;]
K2[[k3 - 1, k3 - 1]] = 2;
K2[[k3 - 1, k3]] = -2;
K2[[k3 - 1, 2 k3 - 2]] = 8;
K2[[k3 - 1, 2 k3 - 1]] = -9;
K2[[k3 - 1, 2 k3]] = -10;
K2[[k3 - 1, 4 k3 - 1]] = -2;
K2[[k3 - 1, 4 k3]] = 2;
K2[[k3, k3]] = 2;
K2[[k3, 2 k3 - 1]] = 9;
K2[[k3, 2 k3]] = -10;
K2[[k3, 4 k3]] = -2;
K2[[k3 + 1, 1]] = 1;
K2[[k3 + 1, 2]] = -2;
K2[[k3 + 1, k3 + 1]] = 3;
K2[[k3 + 1, 2 k3 + 1]] = -2;
K2[[k3 + 1, 4 k3 + 1]] = -2;
K2[[k3 + 1, 4 k3 + 2]] = 2;
K2[[k3 + 2, 1]] = 1;
K2[[k3 + 2, 2]] = 2;
K2[[k3 + 2, 3]] = -3;
K2[[k3 + 2, k3 + 1]] = -2;
K2[[k3 + 2, k3 + 2]] = 2;
K2[[k3 + 2, 2 k3 + 1]] = 2;
K2[[k3 + 2, 2 k3 + 2]] = -2;
For[i = 3, i <= 9, i++,
K2[[k3 + i, i - 2]] = -( i - 2);
K2[[k3 + i, i - 1]] = i - 1;
K2[[k3 + i, i]] = i;
K2[[k3 + i, i + 1]] = -(i + 1);
K2[[k3 + i, k3 + i - 1]] = -2;
K2[[k3 + i, k3 + i]] = 2;
K2[[k3 + i, 2 k3 + i - 1]] = 2;
K2[[k3 + i, 2 k3 + i]] = -2]
K2[[2 k3, k3 - 2]] = -8;
K2[[2 k3, k3 - 1]] = 9;
K2[[2 k3, k3]] = 10;
K2[[2 k3, 2 k3 - 1]] = -2;
K2[[2 k3, 2 k3]] = 2;
K2[[2 k3, 3 k3 - 1]] = 2;
K2[[2 k3, 3 k3]] = -2;
K2[[2 k3 + 1, 1]] = 2 \[Alpha]^-1;
K2[[2 k3 + 1, 2]] = -2 \[Alpha]^-1;
K2[[2 k3 + 1, k3 + 1]] = \[Alpha]^3 - 2 \[Alpha];
K2[[2 k3 + 1, k3 + 2]] = 2 \[Alpha] - 4 \[Alpha]^3;
K2[[2 k3 + 1, k3 + 3]] = 3 \[Alpha]^3;
K2[[2 k3 + 1, 3 k3 + 1]] = -2 \[Alpha];
K2[[2 k3 + 1, 3 k3 + 2]] = 2 \[Alpha]^3;
For[i = 2, i <= 8, i++,
K2[[2 k3 + i, i]] = 2 \[Alpha]^-i;
K2[[2 k3 + i, i + 1]] = -2 \[Alpha]^-i;
K2[[2 k3 + i, k3 + i - 1]] = (i - 1) \[Alpha]^i;
K2[[2 k3 + i, k3 + i]] = i (\[Alpha]^2 - 2) \[Alpha]^i;
K2[[2 k3 + i, k3 + i + 1]] = -(i + 1) (2 \[Alpha]^2 - 1) \[Alpha]^i;
K2[[2 k3 + i, k3 + i + 2]] = (i + 2) \[Alpha]^(i + 2);
K2[[2 k3 + i, 3 k3 + i]] = -2 \[Alpha]^i;
K2[[2 k3 + i, 3 k3 + i + 1]] = 2 \[Alpha]^(i + 2);]
K2[[3 k3 - 1, k3 - 1]] = 2 \[Alpha]^-9;
K2[[3 k3 - 1, k3]] = -2 \[Alpha]^-9;
K2[[3 k3 - 1, 2 k3 - 2]] = 8 \[Alpha]^9;
K2[[3 k3 - 1, 2 k3 - 1]] = 9 (\[Alpha]^2 - 2) \[Alpha]^9;
K2[[3 k3 - 1, 2 k3]] = -10 (2 \[Alpha]^2 - 1) \[Alpha]^9;
K2[[3 k3 - 1, 4 k3 - 1]] = -2 \[Alpha]^9;
K2[[3 k3 - 1, 4 k3]] = 2 \[Alpha]^11;
K2[[3 k3, k3]] = 2 \[Alpha]^-10;
K2[[3 k3, 2 k3 - 1]] = 9 \[Alpha]^10;
K2[[3 k3, 2 k3]] = 10 (\[Alpha]^2 - 2) \[Alpha]^10;
K2[[3 k3, 4 k3]] = -2 \[Alpha]^10;
K2[[3 k3 + 1, 1]] = -\[Alpha] + 2 \[Alpha]^-1;
K2[[3 k3 + 1, 2]] = -2 \[Alpha]^-1;
K2[[3 k3 + 1, k3 + 1]] = 3 \[Alpha];
K2[[3 k3 + 1, 2 k3 + 1]] = -2 \[Alpha]^-1;
K2[[3 k3 + 1, 4 k3 + 1]] = -2 \[Alpha];
K2[[3 k3 + 1, 4 k3 + 2]] = 2 \[Alpha];
K2[[3 k3 + 2, 1]] = 2 - \[Alpha]^-2;
K2[[3 k3 + 2, 2]] = -2 + 4 \[Alpha]^-2;
K2[[3 k3 + 2, 3]] = -3 \[Alpha]^-2;
K2[[3 k3 + 2, k3 + 1]] = -2 \[Alpha]^2;
K2[[3 k3 + 2, k3 + 2]] = 2 \[Alpha]^2;
K2[[3 k3 + 2, 2 k3 + 1]] = 2;
K2[[3 k3 + 2, 2 k3 + 2]] = -2 \[Alpha]^-2;
For[i = 3, i <= 9, i++,
K2[[3 k3 + i, i - 2]] = -(i - 2) \[Alpha]^(-i + 2);
K2[[3 k3 + i, i - 1]] = -(i - 1) \[Alpha]^-i +
2 (i - 1) \[Alpha]^(-i + 2);
K2[[3 k3 + i, i]] = -i \[Alpha]^(-i + 2) + 2 i \[Alpha]^-i;
K2[[3 k3 + i, i + 1]] = -(i + 1) \[Alpha]^-i;
K2[[3 k3 + i, k3 + i - 1]] = -2 \[Alpha]^i;
K2[[3 k3 + i, k3 + i]] = 2 \[Alpha]^i;
K2[[3 k3 + i, 2 k3 + i - 1]] = 2 \[Alpha]^(-i + 2);
K2[[3 k3 + i, 2 k3 + i]] = -2 \[Alpha]^-i]
K2[[4 k3, k3 - 2]] = -8 \[Alpha]^-8;
K2[[4 k3, k3 - 1]] = -9 \[Alpha]^-10 + 18 \[Alpha]^-8;
K2[[4 k3, k3]] = -10 \[Alpha]^-8 + 20 \[Alpha]^-10;
K2[[4 k3, 2 k3 - 1]] = -2 \[Alpha]^10;
K2[[4 k3, 2 k3]] = 2 \[Alpha]^10;
K2[[4 k3, 3 k3 - 1]] = 2 \[Alpha]^-8;
K2[[4 k3, 3 k3]] = -2 \[Alpha]^-10;
K2[[4 k3 + 1, 1]] = -3;
K2[[4 k3 + 1, k3 + 1]] = -1;
K2[[4 k3 + 1, k3 + 2]] = 2;
K2[[4 k3 + 1, 3 k3 + 1]] = 2;
K2[[4 k3 + 1, 4 k3 + 1]] = 2;
K2[[4 k3 + 1, 4 k3 + 2]] = -2;
K2[[4 k3 + 2, 1]] = -3;
K2[[4 k3 + 2, k3 + 1]] = -(2 \[Alpha]^2 - 1);
K2[[4 k3 + 2, k3 + 2]] = 2 \[Alpha]^2;
K2[[4 k3 + 2, 3 k3 + 1]] = 2 \[Alpha]^2;
K2[[4 k3 + 2, 4 k3 + 1]] = 2;
K2[[4 k3 + 2, 4 k3 + 2]] = -2;
abcd2 = LinearSolve[K2, Y2]
Dot[K2, abcd2]


2025-07-31 22:15:45
广告
不感兴趣
开通SVIP免广告
  • 千岛湖铝酮分同
  • 安装激活
    1
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼


  • 千岛湖铝酮分同
  • 安装激活
    1
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼


这是我求解的思路,然后我实部的部分求解已经算出来了,矩阵系数应该没有问题了,希望有大佬能看看为什么?


  • 千岛湖铝酮分同
  • 安装激活
    1
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
关于矩阵的系数我也贴在这里

U11 = Sum[(2*Subscript[a, k, 1] +
I*2*Subscript[a, k, 2])*\[Zeta]^-k, {k, 0, 10}] +
Sum[(-2*Subscript[a, k, 1] +
I*-2*Subscript[a, k, 2])*\[Zeta]^(-k + 1), {k, 0, 11}] +
Sum[(2*Subscript[b, k, 1] + I*2*Subscript[b, k, 2])*\[Zeta]^k, {k,
1, 10}] +
Sum[(-2*Subscript[b, k, 1] + I*-2*Subscript[b, k, 2])*\[Zeta]^(
k + 1), {k, 1, 9}] +
Sum[(-k*Subscript[a, k, 1] + I*k*Subscript[a, k, 2])*\[Zeta]^(
k + 1), {k, 1, 9}] +
Sum[(k*Subscript[a, k, 1] + I*-k*Subscript[a, k, 2])*\[Zeta]^(
k + 2), {k, 1, 8}] +
Sum[(-k*Subscript[a, k, 1] + I*k*Subscript[a, k, 2])*\[Zeta]^k, {k,
1, 10}] +
Sum[(k*Subscript[a, k, 1] + I*-k*Subscript[a, k, 2])*\[Zeta]^(
k - 1), {k, 1, 11}] +
Sum[(k*Subscript[b, k, 1] + I*-k*Subscript[b, k, 2])*\[Zeta]^(-k +
1), {k, 1, 11}] +
Sum[(-k*Subscript[b, k, 1] + I*k*Subscript[b, k, 2])*\[Zeta]^(-k +
2), {k, 1, 12}] +
Sum[(k*Subscript[b, k, 1] +
I*-k*Subscript[b, k, 2])*\[Zeta]^-k, {k, 1, 10}] +
Sum[(-k*Subscript[b, k, 1] + I*k*Subscript[b, k, 2])*\[Zeta]^(-k -
1), {k, 1, 9}] +
Sum[(2*Subscript[c, k, 1] + I*-2*Subscript[c, k, 2])*\[Zeta]^k, {k,
0, 10}] +
Sum[(-2*Subscript[c, k, 1] + I*2*Subscript[c, k, 2])*\[Zeta]^(
k + 1), {k, 0, 9}] +
Sum[(2*Subscript[d, k, 1] +
I*-2*Subscript[d, k, 2])*\[Zeta]^-k, {k, 1, 10}] +
Sum[(-2*Subscript[d, k, 1] + I*2*Subscript[d, k, 2])*\[Zeta]^(-k +
1), {k, 1, 11}];
Collect[U11, \[Zeta], FullSimplify]
U1\[Alpha] =
Sum[(2*Subscript[a, k, 1] +
I*2*Subscript[a, k, 2])*\[Alpha]^-k*\[Zeta]^-k, {k, 0, 10}] +
Sum[(-2*Subscript[a, k, 1] +
I*-2*Subscript[a, k, 2])*\[Alpha]^(-k + 1)*\[Zeta]^(-k +
1), {k, 0, 11}] +
Sum[(2*Subscript[b, k, 1] + I*2*Subscript[b, k, 2])*\[Alpha]^
k*\[Zeta]^k, {k, 1, 10}] +
Sum[(-2*Subscript[b, k, 1] + I*-2*Subscript[b, k, 2])*\[Alpha]^(
k + 1)*\[Zeta]^(k + 1), {k, 1, 9}] +
Sum[(2 \[Alpha]^2 - 1)*(-k*Subscript[a, k, 1] +
I*k*Subscript[a, k, 2])*\[Alpha]^(-k - 1)*\[Zeta]^(k + 1), {k,
1, 9}] +
Sum[(k*Subscript[a, k, 1] +
I*-k*Subscript[a, k, 2])*\[Alpha]^-k*\[Zeta]^(k + 2), {k, 1,
8}] + Sum[(2 \[Alpha] - \[Alpha]^3)*(-k*Subscript[a, k, 1] +
I*k*Subscript[a, k, 2])*\[Alpha]^(-k - 1)*\[Zeta]^k, {k, 1,
10}] + Sum[(k*Subscript[a, k, 1] +
I*-k*Subscript[a, k, 2])*\[Alpha]^(-k + 1)*\[Zeta]^(k - 1), {k,
1, 11}] +
Sum[(2 \[Alpha]^2 - 1)*(k*Subscript[b, k, 1] +
I*-k*Subscript[b, k, 2])*\[Alpha]^(k - 1)*\[Zeta]^(-k + 1), {k,
1, 11}] +
Sum[(-k*Subscript[b, k, 1] + I*k*Subscript[b, k, 2])*\[Alpha]^
k*\[Zeta]^(-k + 2), {k, 1, 12}] +
Sum[(2 \[Alpha] - \[Alpha]^3)*(k*Subscript[b, k, 1] +
I*-k*Subscript[b, k, 2])*\[Alpha]^(k - 1)*\[Zeta]^-k, {k, 1,
10}] + Sum[(-k*Subscript[b, k, 1] +
I*k*Subscript[b, k, 2])*\[Alpha]^(k + 1)*\[Zeta]^(-k - 1), {k,
1, 9}] +
Sum[(2*Subscript[c, k, 1] +
I*-2*Subscript[c, k, 2])*\[Alpha]^-k*\[Zeta]^k, {k, 0, 10}] +
Sum[(-2*Subscript[c, k, 1] +
I*2*Subscript[c, k, 2])*\[Alpha]^(-k + 1)*\[Zeta]^(k + 1), {k,
0, 9}] +
Sum[(2*Subscript[d, k, 1] + I*-2*Subscript[d, k, 2])*\[Alpha]^
k*\[Zeta]^-k, {k, 1, 10}] +
Sum[(-2*Subscript[d, k, 1] + I*2*Subscript[d, k, 2])*\[Alpha]^(
k + 1)*\[Zeta]^(-k + 1), {k, 1, 11}];
Collect[U1\[Alpha], \[Zeta], FullSimplify]


  • 千岛湖铝酮分同
  • 安装激活
    1
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
2楼一直被删提交申诉就一直说操作失败也恢复不了,请问有什么办法吗?


  • 王云飞的天空
  • 还分不清
    4
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
你的原问题是什么?你的代码太长长长了


  • xzcyr
  • 吧主
    15
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
……你能不能用一个比较小的例子重现这个现象呢?比如说,使用洛朗级数展开一个形式非常简单的函数,再把级数展开的项数取的少一点,是不是依旧会观察到这个错误呢?


登录百度账号

扫二维码下载贴吧客户端

下载贴吧APP
看高清直播、视频!
  • 贴吧页面意见反馈
  • 违规贴吧举报反馈通道
  • 贴吧违规信息处理公示
  • 9回复贴,共1页
<<返回mathematica吧
分享到:
©2025 Baidu贴吧协议|隐私政策|吧主制度|意见反馈|网络谣言警示