例,判断125655221是否为质数?
解:125655221*125655220=15789234438903620。
只要求出2^(125655221*125655220)|125655221^2=1即可判定125655221为质数P
有2^100|125655221^2=1179785214848067;1179785214848067^100|125655221^2=13499827557596031;
13499827557596031^100|125655221^2=11149060487417924;
11149060487417924^100|125655221^2=11159257780981749;
11159257780981749^100|125655221^2=2336768293760529;
2336768293760529^100|125655221^2=12228382558790686;
12228382558790686^100|125655221^2=6626494344452428
→6626494344452428^15*12228382558790686^78|125655221^2=11883979973254680;
2336768293760529^92*11159257780981749^34|125655221^2=13943692992422731;
11149060487417924^43*13499827557596031^89|125655221^2=15437871655016443;
1179785214848067^3*2^620|125655221^2=4220089028670237
→4220089028670237*15437871655016443*13943692992422731*11883979973254680|125655221^2=4093415972315457≠1;故125655221非质数P。
解:125655221*125655220=15789234438903620。
只要求出2^(125655221*125655220)|125655221^2=1即可判定125655221为质数P
有2^100|125655221^2=1179785214848067;1179785214848067^100|125655221^2=13499827557596031;
13499827557596031^100|125655221^2=11149060487417924;
11149060487417924^100|125655221^2=11159257780981749;
11159257780981749^100|125655221^2=2336768293760529;
2336768293760529^100|125655221^2=12228382558790686;
12228382558790686^100|125655221^2=6626494344452428
→6626494344452428^15*12228382558790686^78|125655221^2=11883979973254680;
2336768293760529^92*11159257780981749^34|125655221^2=13943692992422731;
11149060487417924^43*13499827557596031^89|125655221^2=15437871655016443;
1179785214848067^3*2^620|125655221^2=4220089028670237
→4220089028670237*15437871655016443*13943692992422731*11883979973254680|125655221^2=4093415972315457≠1;故125655221非质数P。