一元九次方程
x^9-9/4x^7+27/16x^5-15/32x^3+9/256x+s=0,求x=?
解:令x=cosa,有cosa^9-9/4cosa^7+27/16cosa^5-15/32cosa^3+9/256cosa+s=0,即cos9A/256+S=0,cos9a=-256S,a=arccos(-256S)/9,
∴x1=cos(arccos(-256s)/9),
x2=cos(arccos(-256s)/9+π/9),
x3=cos(arccos(-256s)/9+2π/9),
x4=cos(arccos(-256s)/9+3π/9),
x5=cos(arccos(-256s)/9+4π/9),
x6=cos(arccos(-256S)/9+5π/9),
x7=cos(arccos(-256s)/9+6π/9),
x8=cos(arccos(-256s)/9+7π/9),x9=cos(arccos(-256s)/9+8π/9)。
若方程全为实数解,则s的取值范围为:-1/256≤s≤1/256。
x^9-9/4x^7+27/16x^5-15/32x^3+9/256x+s=0,求x=?
解:令x=cosa,有cosa^9-9/4cosa^7+27/16cosa^5-15/32cosa^3+9/256cosa+s=0,即cos9A/256+S=0,cos9a=-256S,a=arccos(-256S)/9,
∴x1=cos(arccos(-256s)/9),
x2=cos(arccos(-256s)/9+π/9),
x3=cos(arccos(-256s)/9+2π/9),
x4=cos(arccos(-256s)/9+3π/9),
x5=cos(arccos(-256s)/9+4π/9),
x6=cos(arccos(-256S)/9+5π/9),
x7=cos(arccos(-256s)/9+6π/9),
x8=cos(arccos(-256s)/9+7π/9),x9=cos(arccos(-256s)/9+8π/9)。
若方程全为实数解,则s的取值范围为:-1/256≤s≤1/256。