我用scriptscriptstyle函数时确实可以将角标变小,比如图片最下行公式的角标可以变小了;可是当分母有很多角标时,我用scriptscriptstyle函数不管用了[图片画中括号部分]。有大神会的帮我调一下,非常感谢。
程序如下
\documentclass{ctexart}\begin{document}\begin{center}{\zihao{4}$M_{x}\left[\frac{k!x^{-\beta}}{(x^{\alpha_{n}}\pm a_{n-1}x^{\alpha_{n-1}}\pm\cdots\pm a_1x^{\alpha_1}\pm b)^{k+1}}\right]$的通项公式及其应用}\\[3mm]{\zihao{3}\ The Specific General Term of $M_{x}\left[\frac{k!x^{-\beta}}{(x^{\alpha_{\scriptscriptstyle n}}\pm a_{\scriptscriptstyle {n-1}}x^{\alpha_{\scriptscriptstyle {n-1}}}\pm\cdots\pm a_1x^{\alpha_{\scriptscriptstyle 1}}\pm b)^{k+1}}\right]$ And its Application}\\{LIANG Jiahui}\\{\centerline{( School of Mathematics,Qiailuo Normal University,Jinan 250200,China)}}\end{center}$a_{\scriptscriptstyle 1}$$s^{\alpha_{\scriptscriptstyle 1}}$\end{document}

程序如下
\documentclass{ctexart}\begin{document}\begin{center}{\zihao{4}$M_{x}\left[\frac{k!x^{-\beta}}{(x^{\alpha_{n}}\pm a_{n-1}x^{\alpha_{n-1}}\pm\cdots\pm a_1x^{\alpha_1}\pm b)^{k+1}}\right]$的通项公式及其应用}\\[3mm]{\zihao{3}\ The Specific General Term of $M_{x}\left[\frac{k!x^{-\beta}}{(x^{\alpha_{\scriptscriptstyle n}}\pm a_{\scriptscriptstyle {n-1}}x^{\alpha_{\scriptscriptstyle {n-1}}}\pm\cdots\pm a_1x^{\alpha_{\scriptscriptstyle 1}}\pm b)^{k+1}}\right]$ And its Application}\\{LIANG Jiahui}\\{\centerline{( School of Mathematics,Qiailuo Normal University,Jinan 250200,China)}}\end{center}$a_{\scriptscriptstyle 1}$$s^{\alpha_{\scriptscriptstyle 1}}$\end{document}
