网页资讯视频图片知道文库贴吧地图采购
进入贴吧全吧搜索

 
 
 
日一二三四五六
       
       
       
       
       
       

签到排名:今日本吧第个签到,

本吧因你更精彩,明天继续来努力!

本吧签到人数:0

一键签到
成为超级会员,使用一键签到
一键签到
本月漏签0次!
0
成为超级会员,赠送8张补签卡
如何使用?
点击日历上漏签日期,即可进行补签。
连续签到:天  累计签到:天
0
超级会员单次开通12个月以上,赠送连续签到卡3张
使用连续签到卡
07月04日漏签0天
mathematica吧 关注:19,835贴子:73,896
  • 看贴

  • 图片

  • 吧主推荐

  • 游戏

  • 0回复贴,共1页
<<返回mathematica吧
>0< 加载中...

求助一个关于画图的问题,我画出来的图只有坐标没有图形

  • 只看楼主
  • 收藏

  • 回复
  • 不留溢则不留意
  • ()[]区别
    5
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
x = ({{1}, {0}}); y = ({{0}, {1}});
Subscript[n, 1] = KroneckerProduct[x, x, x, x, y];
Subscript[n, 2] = KroneckerProduct[x, x, x, y, x];
Subscript[n, 3] = KroneckerProduct[x, x, y, x, x];
Subscript[n, 4] = KroneckerProduct[x, y, x, x, x];
Subscript[n, 5] = KroneckerProduct[x, x, y, y, y];
Subscript[n, 6] = KroneckerProduct[x, y, x, y, y];
Subscript[n, 7] = KroneckerProduct[x, y, y, x, y]; Subscript[n, 8] =
KroneckerProduct[x, y, y, y, x]; Subscript[n, 9] =
KroneckerProduct[y, x, x, x, x]; Subscript[n, 10] =
KroneckerProduct[y, x, x, y, y]; Subscript[n, 11] =
KroneckerProduct[y, x, y, x, y]; Subscript[n, 12] =
KroneckerProduct[y, x, y, y, x];
Subscript[n, 13] = KroneckerProduct[y, y, x, x, y];
Subscript[n, 14] = KroneckerProduct[y, y, x, y, x];
Subscript[n, 15] = KroneckerProduct[y, y, y, x, x];
Subscript[n, 16] = KroneckerProduct[y, y, y, y, y];
\[Phi] = \[Gamma]1*(Subscript[n, 1] + Subscript[n, 2] + Subscript[n,
3] + Subscript[n, 4]) + \[Gamma]2*(Subscript[n, 5] + Subscript[
n, 6] + Subscript[n, 7] + Subscript[n, 8]) + \[Gamma]3*
Subscript[n,
9] + \[Gamma]4*(Subscript[n, 10] + Subscript[n, 11] + Subscript[n,
12] + Subscript[n, 13] + Subscript[n, 14] + Subscript[n,
15]) + \[Gamma]5*Subscript[n, 16];
Subscript[\[Rho], 12345] = \[Phi].Transpose[\[Phi]];
\[Gamma]1 = -(-1 + \[Alpha]1 + \[Gamma]^2)*(5 + \[Alpha]1 +
5 \[Gamma]^2)^(1/2)/(4*(2 \[Alpha]2)^(1/2));
\[Gamma]2 = -3*(\[Gamma]^4*(5 + \[Alpha]1 +
5 \[Gamma]^2)/\[Alpha]2)^(1/2)/(2*2^(1/2)*\[Gamma]);
\[Gamma]3 = (-1 + \[Alpha]1 + \[Gamma]^2)/((2 \[Alpha]2)^(1/2));
\[Gamma]4 = \[Gamma]*(5 + \[Alpha]1 +
5 \[Gamma]^2)/(2 (2 \[Alpha]2)^(1/2));
\[Gamma]5 = 3*(2^(1/2) \[Gamma]^2)/\[Alpha]2;
\[Gamma]6 = ((\[Gamma]^2 (5 + \[Alpha]1 +
5 \[Gamma]^2))/(1 + \[Alpha]1 +
34 \[Gamma]^2 - \[Alpha]1*\[Gamma]^2 + \[Gamma]^4))^(1/
2)*(-2 - 2 \[Alpha]1 + 17 \[Gamma]^2 - 3 \[Alpha]1*\[Gamma]^2 +
3 \[Gamma]^4)/(4*(3 + 2 \[Gamma]^2 + 3 \[Gamma]^4));
\[Gamma]7 = -((\[Gamma]^2*(5 + \[Alpha]1 +
5 \[Gamma]^2))/(1 + \[Alpha]1 +
34 \[Gamma]^2 - \[Alpha]1*\[Gamma]^2 + \[Gamma]^4))^(1/
2)*(1 + \[Alpha]1 - \[Gamma]^2 +
6 \[Gamma]^4)/(4 \[Gamma]*(3 + 2 \[Gamma]^2 + 3 \[Gamma]^4));
\[Gamma]8 = -3*((\[Gamma]^2 (5 + \[Alpha]1 +
5 \[Gamma]^2))/(1 + \[Alpha]1 +
34 \[Gamma]^2 - \[Alpha]1\[Gamma]^2 + \[Gamma]^4))^(1/
2)*(5 - \[Alpha]1 +
5 \[Gamma]^2)/(4*(3 + 2 \[Gamma]^2 + 3 \[Gamma]^4);
\[Gamma]9 = (1 + \[Alpha]1 - \[Gamma]^2)/(4 \[Gamma]*(34 - \
\[Alpha]1 + ((1 + \[Alpha]1)/\[Gamma]^2) + \[Gamma]^2)^(1/2));
\[Gamma]10 =
3/(2*(34 - \[Alpha]1 + ((1 + \[Alpha]1)/\[Gamma]^2)) + \
\[Gamma]^2)^(1/2));
\[Alpha]1 = (1 + 34 \[Gamma]^2 + \[Gamma]^4)^(1/2);
\[Alpha]2 =
2 - 2 \[Alpha]1 + 71 \[Gamma]^2 + 17 \[Alpha]1*\[Gamma]^2 +
104 \[Gamma]^4 + 3 \[Alpha]1*\[Gamma]^4 + 3 \[Gamma]^6;
Subscript[\[Psi], 0] = ({{1}, {0}});
Subscript[\[Psi], 1] = ({{0}, {1}});
Subscript[C, 12] = \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 0\), \(1\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 0\), \(1\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(m =
0\), \(1\)]\((Transpose[\((KroneckerProduct[IdentityMatrix[4],
\*SubscriptBox[\(\[Psi]\), \(i\)],
\*SubscriptBox[\(\[Psi]\), \(j\)],
\*SubscriptBox[\(\[Psi]\), \(m\)]])\)] .
\*SubscriptBox[\(\[Rho]\), \(12345\)] . \((KroneckerProduct[
IdentityMatrix[4],
\*SubscriptBox[\(\[Psi]\), \(i\)],
\*SubscriptBox[\(\[Psi]\), \(j\)],
\*SubscriptBox[\(\[Psi]\), \(m\)]])\))\)\)\)\);
Subscript[C, 23] = \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 0\), \(1\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 0\), \(1\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(m =
0\), \(1\)]\((Transpose[\((KroneckerProduct[
\*SubscriptBox[\(\[Psi]\), \(i\)], IdentityMatrix[4],
\*SubscriptBox[\(\[Psi]\), \(j\)],
\*SubscriptBox[\(\[Psi]\), \(m\)]])\)] .
\*SubscriptBox[\(\[Rho]\), \(12345\)] . \((KroneckerProduct[
\*SubscriptBox[\(\[Psi]\), \(i\)], IdentityMatrix[4],
\*SubscriptBox[\(\[Psi]\), \(j\)],
\*SubscriptBox[\(\[Psi]\), \(m\)]])\))\)\)\)\);
Subscript[C, 12] =
2 Abs[Subscript[\[Rho], 12][[1, 2]]] +
2 Abs[Subscript[\[Rho], 12][[1, 3]]] +
2 Abs[Subscript[\[Rho], 12][[1, 4]]] +
2 Abs[Subscript[\[Rho], 12][[2, 3]]] +
2 Abs[Subscript[\[Rho], 12][[2, 4]]] +
2 Abs[Subscript[\[Rho], 12][[3, 4]]];
Subscript[C, 23] =
2 Abs[Subscript[\[Rho], 23][[1, 2]]] +
2 Abs[Subscript[\[Rho], 23][[1, 3]]] +
2 Abs[Subscript[\[Rho], 23][[1, 4]]] +
2 Abs[Subscript[\[Rho], 23][[2, 3]]] +
2 Abs[Subscript[\[Rho], 23][[2, 4]]] +
2 Abs[Subscript[\[Rho], 23][[3, 4]]];
Subscript[k, 12] = D[Subscript[C, 12], \[Gamma]];
Subscript[k, 23] = D[Subscript[C, 23], \[Gamma]];
Plot[Subscript[k, 12], {\[Gamma], -35, 35}, PlotStyle -> Green,
Frame -> True,
FrameLabel -> {"\[Gamma]", "\!\(\*SubscriptBox[\(k\), \(12\)]\)"}]
Plot[Subscript[k, 23], {\[Gamma], -35, 35}, PlotStyle -> Blue,
Frame -> True,
FrameLabel -> {"\[Gamma]", "\!\(\*SubscriptBox[\(k\), \(23\)]\)"}]
这是源代码


登录百度账号

扫二维码下载贴吧客户端

下载贴吧APP
看高清直播、视频!
  • 贴吧页面意见反馈
  • 违规贴吧举报反馈通道
  • 贴吧违规信息处理公示
  • 0回复贴,共1页
<<返回mathematica吧
分享到:
©2025 Baidu贴吧协议|隐私政策|吧主制度|意见反馈|网络谣言警示