完美全解一元三次...吧 关注:42贴子:4,605
  • 5回复贴,共1

尧驰公式1-1,尧驰公式1-2,尧驰公式2,最简式判别式,简

只看楼主收藏回复

尧驰公式1-1,尧驰公式1-2,尧驰公式2,最简式判别式,简式判别式,一般式判别式。
A1X^3+A2X^2+A3X+A4=0
把它变为即X^3+A2/A1X^2+A3/A1X+A4/A1=0,
令A2/A1=a,A3/A1=b,A4/A1=c,
有一般式X^3+aX^2+bX+c=0。
一般判别式c^2+4/27(a^3c+b^3)-2abc/3-a^2b^2/27>0,有单实根
一般判别式c^2+4/27(a^3c+b^3)-2abc/3-a^2b^2/27≤0,有三实根
尧驰公式1-1:
(仅适合c^2+4/27(a^3c+b^3)-2abc/3-a^2b^2/27≤0,有单实根者)
X1=((-(c+2a^3/27-ab/3)+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)+((-(c+2a^3/27-ab/3)-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)
X2&X3=Z[((-(c+2a^3/27-ab/3)+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(0333…)+((-(c+2a^3/27-ab/3)-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(0.333…)]
±i[(((c+2a^3/27-ab/3)+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(0.333…)-((-(c+2a^3/27-ab/3)-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(0.333…)]
Z()表示取实部,i()表示取虚部。
原理:(-a)^0.333333333333333333*-2/(1+3^0.5i)=(-a)^(1/3)
尧驰公式1-2:(仅适合c^2+4/27(a^3c+b^3)-2abc/3-a^2b^2/27≤0,有三实根者)
X1=-((c+2a^3/27-ab/3+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)-((c+2a^3/27-ab/3-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)-a/3
X2=Z[2(((c+2a^3/27-ab/3+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)-((-(c+2a^3/27-ab/3)-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3))]
X3=((-(c+2a^3/27-ab/3)+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)+((-(c+2a^3/27-ab/3)-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)-a/3
Z()代表取()内实数部分
推理:令X=A+1/A有A^3+1/A^3+(3+p)(A+1/A)+q=0,令p=-3,(注:最简式p=-3),有A^3+1/A^3+q=0为A^3的一元二次方程,求出A→Ⅹ,余略。
尧驰公式2:
X1(min)=2((a^2/9-b/3)^0.5sin(arcsin((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+4π/3)-a/3=-2(a^2/9-b/3)^0.5cos(arccos(((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3)-a/3
X2(mid)=2((a^2/9-b/3)^0.5sin(arcsin((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3)-a/3=-2(a^2/9-b/3)^0.5cos(arccos(((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+4π/3)-a/3
X3(max)=2((a^2/9-b/3)^0.5sin(arcsin((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+2 π/3)-a/3=-2(a^2/9-b/3)^0.5cos(arccos(((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+2π/3)-a/3
例,X^3-6X^2+11X-6=0
解,判别式c^2+4/27(a^3c+b^3)-2abc/3-a^2b^2/27=-4/27≤0,有三实根
由尧驰公式1-2得:
X1=-((c+2a^3/27-ab/3+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)-((c+2a^3/27-ab/3-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)-a/3=-1+2=1
X2=2
X3=((-(c+2a^3/27-ab/3)+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)+((-(c+2a^3/27-ab/3)-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)-a/3=1+2=3
由尧驰公式2得
X1(min)=2((a^2/9-b/3)^0.5sin(arcsin((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+4π/3)-a/3=-2(a^2/9-b/3)^0.5cos(arccos(((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3)-a/3=1
X2(mid)=2((a^2/9-b/3)^0.5sin(arcsin((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3)-a/3=-2(a^2/9-b/3)^0.5cos(arccos(((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+4π/3)-a/3=2
X3(max)=2((a^2/9-b/3)^0.5sin(arcsin((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+2 π/3)-a/3=-2(a^2/9-b/3)^0.5cos(arccos(((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+2π/3)-a/3=3。
例2:X^3-7X^2-4X+5=0 ,解:判别式<0,它有三实根
由尧驰公式1-2得:
X1=((-(c+2a^3/27-ab/3)+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)+((-(c+2a^3/27-ab/3)-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)-a/3=
7.4469717693681
X2=-(X3+X1)= 0.62584314017269,
X3=-((c+2a^3/27-ab/3+((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)-((c+2a^3/27-ab/3-((c+2a^3/27-ab/3)^2+4(b-a^2/3)^3/27)^0.5)/2)^(1/3)=
-1.072814909540
尧驰公式2:
X(min)=2((a^2/9-b/3)^0.5sin(arcsin((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+4π/3)-a/3=-2(a^2/9-b/3)^0.5cos(arccos(((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3)-a/3=-1.072814909540
X(mid)=2((a^2/9-b/3)^0.5sin(arcsin((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3)-a/3=-2(a^2/9-b/3)^0.5cos(arccos(((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+4π/3)-a/3= 0.62584314017269,
X(max)=2((a^2/9-b/3)^0.5sin(arcsin((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+2 π/3)-a/3=-2(a^2/9-b/3)^0.5cos(arccos(((27/(a^2/3-b)^3)^0.5(c/2+a^3/27-ab/6)/3+2π/3)-a/3=7.4469717693681)。


IP属地:新疆来自Android客户端1楼2020-02-15 21:39回复
    另一种算法:先简化它为简式,求出简式解,然后再加上-a/3即得原式解。
    简化一般式:
    用配方法得,简化式为:x^3式+px+q=0,p=b-a^2/3,q=c+2a^3/27-ab/3。
    简式判别式为q^2+4p^3/27>0,有单实根,q^2+4p^3/27≤0,有三实根。
    尧驰公式1-1:
    (仅适合q^2+4p^3/27>0,有单实根者)
    X1=((-q+(q^2+4p^3/27)^0.5)/2)^(1/3)+((-q-(q^2+4p^3/27)^0.5)/2)^(1/3)
    X2&X3=Z[((-q+(q^2+4p^3/27)^0.5)/2)^(0.333…)+((-q-(q^2+4p^3/27)^0.5)/2)^(0.333…)]
    ±i[((q+(q^2+4p^3/27)^0.5)/2)^(0.333…)-((-q-(q^2+4p^3/27)^0.5)/2)^(0.333…)]
    Z()表示取实部,i()表示取虚部。
    尧驰公式1-2:(仅适合q^2+4p^3/27≤0,有三实根者)
    X1=((-q+(q^2+4p^3/27)^0.5)/2)^(1/3)+((-q-(q^2+4p^3/27)^0.5)/2)^(1/3)
    X2=Z[-2(((q+(q^2+4p^3/27)^0.5)/2)^(1/3)-((-q-(q^2+4p^3/27)^0.5)/2)^(1/3))]
    X3=-((q+(q^2+4p^3/27)^0.5)/2)^(1/3)-((q-(q^2+4p^3/27)^0.5)/2)^(1/3)
    如上例2:简化之,p=b-a^2/3=-4-49/3=-61/3,q=c+2a^3/27-ab/3=5-2*343/27-28/3=-803/27。
    x^3-61/3x-803/27=0,三实根为:
    (-3.4061482428741,-1.7074901931606,5.1136384360348)
    X2=-(X3+X1)
    &=q/[
    2((4p^3/27)/4)^(1/3)+((-q+(q^2+4p^3/27)^0.5)/2)^(2/3)
    +((q+(q^2+4p^3/27)^0.5)/2)^(2/3)]
    =q/[2p/3+
    ((-q^2+q(q^2+4p^3/27)^0.5-2p^3/27)/2)^(1/3)+
    ((-q^2-q(q^2+4p^3/27)^0.5-2p^3/27)/2)^(1/3)]
    尧驰公式2得:
    X1(min)=2(-p/3)^0.5sin[(arcsin((27/(-p)^3)^0.5*q/2))/3+4π/3]=
    -2(-p/3)^0.5cos((arccos((27/(-p)^3)^0.5*q/2))/3)
    X2(mid)=2(-p/3)^0.5sin[(arcsin((27/(-p)^3)^0.5*q/2))/3]=
    -2(-p/3)^0.5cos(arccos(((27/(-p)^3)^0.5*q/2))/3+4π/3)
    X3(max)=2(-p/3)^0.5sin[(arcsin((27/(-p)^3)^0.5*q/2))/3+2π/3)=
    2(-p/3)^0.5cos(arccos(((27/(-p)^3)^0.5*q/2))/3+2π/3)
    如上例:X^3-7X^2-4X+5=0
    简化之,p=b-a^2/3=-4-49/3=-61/3,q=c+2a^3/27-ab/3=5-2*343/27-28/3=-803/27。
    ⅹ^3-61/3x-803/27=0,由于q^2+4p^3/27=(-803/27)^2+4(-61/3)^3/27=-9745/27<0,
    由尧驰公式1-2:
    x1=((-q+(q^2+4p^3/27)^0.5)/2)^(1/3)+((-q-(q^2+4p^3/27)^0.5)/2)^(1/3)=-3.4061482428741
    X2=Z[2(((q+(q^2+4p^3/27)^0.5)/2)^(1/3)-((-q-(q^2+4p^3/27)^0.5)/2)^(1/3))]=
    -1.707490193160639
    x3=-((q+(q^2+4p^3/27)^0.5)/2)^(1/3)-((q-(q^2+4p^3/27)^0.5)/2)^(1/3)
    =5.1136384360348
    最后原根X=x-a/3=x+7/3。略。
    例1>X^3+4X+1=0,
    解:它属于简式X^3+pX+q=0形式。由于简式判别式为27q^2/(-p^3)+4=2.75>0,所以它有单实根,
    根据尧驰公式1得:
    X1=((-q+(q^2+4p^3/27)^0.5)/2)^(1/3)+((-q-(q^2+4p^3/27)^0.5)/2)^(1/3)=-0.2462661721678。


    IP属地:新疆来自Android客户端2楼2020-02-15 21:40
    回复
      2025-08-20 22:23:28
      广告
      不感兴趣
      开通SVIP免广告
      例1>X^3+4X+1=0,
      解:它属于简式X^3+pX+q=0形式。由于简式判别式为27q^2/(-p^3)+4=2.75>0,所以它有单实根,
      根据尧驰公式1得:
      X1=((-q+(q^2+4p^3/27)^0.5)/2)^(1/3)+((-q-(q^2+4p^3/27)^0.5)/2)^(1/3)=-0.2462661721678。
      X2或X3=X2&X3=Z[((-q+(q^2+4p^3/27)^0.5)/2)^(0.33333333333333333)+((-q-(q^2+4p^3/27)^0.5)/2)^(0.33333333333333333)]
      ±i[((q+(q^2+4p^3/27)^0.5)/2)^(0.33333333333333333)-((-q-(q^2+4p^3/27)^0.5)/2)^(0.33333333333333333)]
      =0.1231330860839±2.011339173452 i
      由尧驰公式2得
      X1(min)=2(-p/3)^0.5sin[(arcsin((27/(-p)^3)^0.5*q/2))/3+4π/3]
      =-2(-p/3)^0.5cos[(arccos((27/(-p)^3)^0.5*q/2))/3]=0.1231330860838613-2.011339173452754i
      X2(mid)=2(-p/3)^0.5sin[(arcsin((27/(-p)^3)^0.5*q/2))/3]
      =-2(-p/3)^0.5cos(arccos(((27/(-p)^3)^0.5*q/2))/3+4π/3)
      =-0.2462661721677227+4.266353048082822E-16i(由于计算误差,后缀复数太小忽略不计)=-0.2462661721677227
      X3(max)=2(-p/3)^0.5sin[(arcsin((27/(-p)^3)^0.5*q/2))/3+2π/3)=-
      2(p/3)^0.5cos(arccos(((27/(-p)^3)^0.5*q/2))/3+2π/3)=0.1231330860838613+2.011339173452754i
      凡是有单实根者,X2为实根值。
      例2>X^3-13/16X-3/16=0,
      解:它属于简式X^3+pX+q=0形式。由于简式判别式为q^2+4p^3/27=-1225/27648<0,所以它有三实根,
      根据尧驰公式1-2得:
      X1=((-q+(q^2+4p^3/27)^0.5)/2)^(1/3)+((-q-(q^2+4p^3/27)^0.5)/2)^(1/3)=1
      X2=-(X3+X1)=-0.25
      X3=-((q+(q^2+4p^3/27)^0.5)/2)^(1/3)-((q-(q^2+4p^3/27)^0.5)/2)^(1/3)=-0.75
      推导:
      由于x=(-p/3)^0.5X,∴有简式x1=(-p/3)^0.5{-[q/2+(q^2-4)^0.5/2]^(1/3)-[q/2-(q^2-4)^0.5/2]^(1/3)}=
      =-[q/2+(q^2-4p^3/27)^0.5/2]^(1/3)-[q/2-(q^2-4p^3/27)^0.5/2]^(1/3)
      根据尧驰公式2得:
      X1(min)=2(-p/3)^0.5sin[(arcsin((27/(-p)^3)^0.5*q/2))/3+4π/3]
      =-2(-p/3)^0.5cos[(arccos((27/(-p)^3)^0.5*q/2))/3]=-0.75
      X2(mid)=2(-p/3)^0.5sin[(arcsin((27/(-p)^3)^0.5*q/2))/3]
      =-2(-p/3)^0.5cos(arccos(((27/(-p)^3)^0.5*q/2))/3+4π/3)
      =-0.25
      X3(max)=2(-p/3)^0.5Sin[(arcsin((27/(-p)^3)^0.5*q/2))/3+2π/3)
      =-2(-p/3)^0.5cos(arccos(((27/(-p)^3)^0.5*q/2))/3+2π/3)=1。


      IP属地:新疆来自Android客户端3楼2020-02-15 21:42
      回复
        另一种算法:先简化它为简式或最简式,求出简式解或最简解,然后乘以倍数再加上-a/3即得原式解,略。
        x^3+px+q=0,
        最简简化式:I类
        令x=(-p/3)^0.5X,(注:p≤0)有
        最简式为:X^3-3X+qj=0,qj=(27/p^3)^0.5q。
        最简判别式为qj^2-4>0,有单实根,qj^2-4≤0,有三实根。
        最简简化式:II类
        令x=(p/3)^0.5X,(注:p>0),((p/3)^0.5X)^3+3((p/3)^0.5X)+q=0
        (p^3/27)^0.5X^3+p(p/3)^0.5X+q=0,
        X^3+(p^3/3*27/p^3)X+(27q^2/p^3)^0.5,令qj=(27/p^3)^0.5q,有
        最简式为:X^3+3X+qj=0
        最简判别式为qj^2+4>0,有单实根,qj^2+4≤0不存在。
        尧驰公式1-1:
        X1=((-qj+(qj^2-4)^0.5)/2)^(1/3)+((-qj-(qj^2-4)^0.5)/2)^(1/3)
        X2&X3=Z[-((-qj+(qj^2-4)^0.5)/2)^(0.333…)-((-qj-(qj^2-4)^0.5)/2)^(0.333…)]
        ±i[((qj+(qj^2-4)^0.5)/2)^(0.333…)-((-qj-(qj^2-4)^0.5)/2)^(0.333…)]
        Z()表示取实部,i()表示取虚部。
        X^3+3X+qj=0
        设X=1/A-A,有-A^3+1/A^3+3(A-1/A)+3(-A+1/A)+qj=0,→-A^3+1/A^3+qj=0,A^6-qjA^3-1=0,A^3=[qj±(qj^2+4)^0.5]/2,A=[qj/2+(qj^2+4)^0.5/2]^1/3,1/A=-[qj/2-(qj^2+4)^0.5/2]^(1/3),
        X=A-1/A=-[qj/2+(qj^2+4)^0.5/2]^(1/3)-[qj/2-(qj^2+4)^0.5/2]^(1/3)
        Ⅹ1=-[qj/2+(qj^2+4)^0.5/2]^(1/3)-[qj/2-(qj^2+4)^0.5/2]^(1/3)
        X2={-[qj/2+(qj^2+4)^0.5/2]^(0.33...)-[qj/2-(qj^2+4)^0.5/2]^(0.33...)}(-1-3^0.5i)/2,
        X3={-[-qj/2+(qj+4)^0.5/2]^(0.33…)-[-qj/2-(qj+4)^0.5/2]^(0.33…))}*(1+3^0.5i)/2
        其中(-1-3^0.5i)/2=-e^(πi/3)是x^2+x+1=0的根
        (-a)^(1/3)*e^(πi/3)=(-a)^(0.3333..)
        例1>X^3+3X+2.05=0,解:它属于最简式,由于最简判别式为qj^2-4=0.2025>0,所以它有单实根
        Ⅹ1=-[qj/2+(qj^2+4)^0.5/2]^(1/3)-[qj/2-(qj^2+4)^0.5/2]^(1/3)=-0.6083027800384306X2={-[qj/2+(qj^2+4)^0.5/2]^(0.33...)-[qj/2-(qj^2+4)^0.5/2]^(0.33...)}(-1-3^0.5i)/2=
        (0.3041513898731516+1.8103933835203083i)
        X3={-[-qj/2+(qj+4)^0.5/2]^(0.33…)-[-qj/2-(qj+4)^0.5/2]^(0.33…))}*(1+3^0.5i)/2=
        (0.3041513898731516-1.8103933835203083i)
        尧驰公式1-2:(适合qj^2-4≤0)
        X1=-((qj+(qj^2-4)^0.5)/2)^(1/3)-((qj-(qj^2-4)^0.5)/2)^(1/3)
        推导如下:
        设X=-A-1/A,有-A^3-1/A^3-3(A+1/A)-3(-A-1/A)+qj=0,→-A^3-1/A^3+qj=0,A^6-qjA^3+1=0,
        A^3=[qj±(qj^2-4)^0.5]/2,A=[qj/2+(qj^2-4)^0.5/2]^1/3,1/A=[qj/2-(qj^2-4)^0.5/2]^(1/3)
        Ⅹ=-A-1/A=-(qj/2+(qj^2-4)^0.5/2)^(1/3)-(qj/2-(qj^2-4)^0.5/2)^(1/3)
        X2=Z[2(((qj+(qj^2-4)^0.5)/2)^(1/3)-((-qj-(qj^2-4)^0.5)/2)^(1/3))]
        [Z()代表取实数部分]
        X3=((-qj+(qj^2-4)^0.5)/2)^(1/3)+((-qj-(qj^2-4)^0.5)/2)^(1/3)


        IP属地:新疆来自Android客户端4楼2020-02-15 21:44
        回复
          尧驰公式2:
          X1(min)=2sin(arcsin(qj/2)/3+4π/3)=-2cos(arccos(qj/2)/3)
          X2(mid)=2sin(arcsin(qj/2)/3)=-2cos(arccos(qj/2)/3+4π/3)
          X3(max)=2sin(arcsin(qj/2)/3+2π/3)=-2cos(arccos(qj/2)/3+2π/3)
          例1>X^3-3X+2.05=0,解:它属于最简式,由于最简判别式为qj^2-4=0.2025>0,所以它有单实根,
          由尧驰公式1-1得:
          X1=((-q+(q^2-4)^0.5)/2)^(1/3)+((-q-(q^2-4)^0.5)/2)^(1/3)=-0.9283177667225558-1.0772173450159417=-2.0055351117384976.
          x2&x3=Z[-((-qj+(qj^2-4)^0.5)/2)^(0.333…)-((-qj-(qj^2-4)^0.5)/2)^(0.333…)]
          ±i[((qj+(qj^2-4)^0.5)/2)^(0.333…)-((-qj-(qj^2-4)^0.5)/2)^(0.333…)]=Z((-1.002767555869249-1.7368443549472015i)±(-0.07444978914669309-0.12895081741486247i))
          =1.0027675558692488±0.1289508174148622i
          由尧驰公式2:
          X1(min)=2sin(arcsin(qj/2)/3+4π/3)=-2cos(arccos(qj/2)/3)=-2.005535111738498+2.735240879270790E-17i(后缀太小略去)=-2.005535111738498
          X2(mid)=2sin(arcSin(qj/2)/3)=-2cos(arccos(qj/2)/3+4π/3)=(1.00276755586925-0.1289508174148624i)
          X3(max)=2sin(arcsin(qj/2)/3+2π/3)=2cos(arccos(qj/2)/3+4π/3)=(1.00276755586925+0.1289508174148623i)
          例2>X^3-3X-2.05=0,
          解:它属于最简式X^3-3X+qj=0,由于最简判别式为qj^2-4>0,所以它有单实根,根据尧驰公式1得:
          X1=((-q+(q^2-4)^0.5)/2)^(1/3)+((--(q^2-4)^0.5)/2)^(1/3)=1.0772173450159417+0.9283177667225558=2.0055351117384976.
          X2&X3=Z[-((2.05+(2.05^2-4)^0.5)/2)^(0.33333333333333333)-((2.05-(2.05^2-4)^0.5)/2)^(0.33333333333333333)]±i[((-2.05+(2.05^2-4)^0.5)/2)^(0.33333333333333333)-((-2.05-(2.05^2-4)^0.5)/2)^(0.33333333333333333)]=
          Z[(-1.002767555869249+1.736844354947096i)]±(-0.07444978914669914-0.1289508174148417i)=
          -1.0027675558692488±0.1289508174148622i。
          [小结:最简式的qj值相反时,它们的三个根互为相反数。]


          IP属地:新疆来自Android客户端5楼2020-02-15 21:44
          回复
            解:它属于最简式X^3-3X+qj=0,由于最简判别式为qj^2-4=999996>0,所以它有单实根,根据尧驰公式1-2得:
            X1=-((qj+(qj^2-4)^0.5)/2)^(1/3)-((qj-(qj^2-4)^0.5)/2)^(1/3)=10.099996699996298.
            X3=((-qj+(qj^2-4)^0.5)/2)^(1/3)+((-qj-(qj^2-4)^0.5)/2)^(1/3)=9.999996666662222+0.10000003333407627=10.099996699996298.
            二者相同,说明方程有一个实根时公式1-2不适合,公式1-1适合。
            X2&X3=Z[-((1000+(1000^2-4)^0.5)/2)^(0.33333333333333)-((1000-(1000^2-4)^0.5)/2)^(0.33333333333333)±i(((-1000+(1000^2-4)^0.5)/2)^(0.333333333333333)-((-1000-(1000^2-4)^0.5)/2)^(0.33333333333333))=
            -5.04999834999815±8.573648581842589i
            例4>X^3-3X-0.2=0,
            解:它属于最简式X^3-3X-qj=0,由于最简判别式为qj^2-4=-3.96<0,所以它有三实根,
            由尧驰公式1-2得
            X1=-((qj+(qj^2-4)^0.5)/2)^(1/3)-((qj-(qj^2-4)^0.5)/2)^(1/3)=-1.697702485255768
            X2=((qj+(qj^2-4)^0.5)/2)^(1/3)+((qj-(qj^2-4)^0.5)/2)^(1/3)-(-qj+(qj^2-4)^0.5)/2)^(1/3)-((-qj-(qj^2-4)^0.5)/2)^(1/3))=-0.06676587367526449
            X3=((-qj+(qj^2-4)^0.5)/2)^(1/3)+((-qj-(qj^2-4)^0.5)/2)^(1/3)=1.764468358931032
            根据尧驰公式2得:
            X1(min)=2sin(arcsin(qj/2)/3+4π/3)=-2cos(arccos(qj/2)/3)=-1.697702485255768。
            X2(mid)=2sin(arcsin(qj/2)/3)=-2cos(arccos(qj/2)/3+4π/3)=-0.06676587367526449。
            X3(max)=2sin(arcsin(qj/2)/3+2π/3)=-2cos(arccos(qj/2)/3+2π/3)=1.764468358931032。
            例5>X^3-3X+1=0,
            解:它属于最简式X^3-3X+qj=0,由于最简判别式为qj^2-4<0,所以它有三实根,
            由尧驰公式1-2得
            X1=-((qj+(qj^2-4)^0.5)/2)^(1/3)-((qj-(qj^2-4)^0.5)/2)^(1/3)=-1.879385241571817
            X2=Z[2(((1+(1^2-4)^0.5)/2)^(1/3)-((-1-(1^2-4)^0.5)/2)^(1/3))=0.3472963553338608,
            X3=((-qj+(qj^2-4)^0.5)/2)^(1/3)+((-qj-(qj^2-4)^0.5)/2)^(1/3)=1.532088886237956
            由尧驰公式2得:
            X1(min)=2sin(arcsin(qj/2)/3+4π/3)=-2cos(arccos(qj/2)/3)=-1.8793852415718166。
            X2(mid)=2sin(arcsin(qj/2)/3)=-2cos(arccos(qj/2)/3+4π/3)=0.3472963553338607。
            X3(max)=2sin(arcsin(qj/2)/3+2π/3)=-2cos(arccos(qj/2)/3+2π/3)=1.532088886237956。


            IP属地:新疆来自Android客户端6楼2020-02-15 21:45
            回复