举个例子
L=17*a1*((x1 - 22)^2 + (y1 - 38)^2)^(1/2) -
(40*a2 - 40)*((x2 - 8)^2 + (y2 - 13)^2)^(1/2) - (60*a3 - 60)*((x2 - 5)^2 + (y2
- 81)^2)^(1/2) - (25*a4 - 25)*((x2 - 52)^2 + (y2 - 32)^2)^(1/2) - (30*a5 -
30)*((x2 - 38)^2 + (y2 - 11)^2)^(1/2) - (15*a6 - 15)*((x2 - 16)^2 + (y2 -
12)^2)^(1/2) - (50*a7 - 50)*((x2 - 81)^2 + (y2 - 63)^2)^(1/2) - (8*a8 - 8)*((x2
- 18)^2 + (y2 - 45)^2)^(1/2) - (35*a9 - 35)*((x2 - 62)^2 + (y2 - 12)^2)^(1/2) -
(17*a1 - 17)*((x2 - 22)^2 + (y2 - 38)^2)^(1/2) + 40*a2*((x1 - 8)^2 + (y1 -
13)^2)^(1/2) + 60*a3*((x1 - 5)^2 + (y1 - 81)^2)^(1/2) + 25*a4*((x1 - 52)^2 +
(y1 - 32)^2)^(1/2) + 30*a5*((x1 - 38)^2 + (y1 - 11)^2)^(1/2) + 15*a6*((x1 -
16)^2 + (y1 - 12)^2)^(1/2) + 50*a7*((x1 - 81)^2 + (y1 - 63)^2)^(1/2) +
8*a8*((x1 - 18)^2 + (y1 - 45)^2)^(1/2) + 35*a9*((x1 - 62)^2 + (y1 -
12)^2)^(1/2)
现在对L中的各参数分别求偏导数,并令其为零,得到方程组,我做了是空解,怎么做
syms x1 x2 y1 y2 a1 a2 a3 a4 a5 a6 a7 a8 a9 k1 k2 k3 k4 k5 k6 k7 k8 k9
L=17*a1*sqrt((x1-22)^2+(y1-38)^2)+40*a2*sqrt((x1-8)^2+(y1-13)^2)+60*a3*sqrt((x1-5)^2+(y1-81)^2)+25*a4*sqrt((x1-52)^2+(y1-32)^2)+30*a5*sqrt((x1-38)^2+(y1-11)^2)+15*a6*sqrt((x1-16)^2+(y1-12)^2)+50*a7*sqrt((x1-81)^2+(y1-63)^2)+8*a8*sqrt((x1-18)^2+(y1-45)^2)+35*a9*sqrt((x1-62)^2+(y1-12)^2)+17*(1-a1)*sqrt((x2-22)^2+(y2-38)^2)+40*(1-a2)*sqrt((x2-8)^2+(y2-13)^2)+60*(1-a3)*sqrt((x2-5)^2+(y2-81)^2)+25*(1-a4)*sqrt((x2-52)^2+(y2-32)^2)+30*(1-a5)*sqrt((x2-38)^2+(y2-11)^2)+15*(1-a6)*sqrt((x2-16)^2+(y2-12)^2)+50*(1-a7)*sqrt((x2-81)^2+(y2-63)^2)+8*(1-a8)*sqrt((x2-18)^2+(y2-45)^2)+35*(1-a9)*sqrt((x2-62)^2+(y2-12)^2)+k1*(a1-a1^2)+k2*(a2-a2^2)+k3*(a3-a3^2)+k4*(a4-a4^2)+k5*(a5-a5^2)+k6*(a6-a6^2)+k7*(a7-a7^2)+k8*(a8-a8^2)+k9*(a9-a9^2);
h1=diff(L,x1);
h2=diff(L,x2);
h3=diff(L,y1);
h4=diff(L,y2);
h5=diff(L,a1);
h6=diff(L,a2);
h7=diff(L,a3);
h8=diff(L,a4);
h9=diff(L,a5);
h10=diff(L,a6);
h11=diff(L,a7);
h12=diff(L,a8);
h13=diff(L,a9);
h14=diff(L,k1);
h15=diff(L,k2);
h16=diff(L,k3);
h17=diff(L,k4);
h18=diff(L,k5);
h19=diff(L,k6);
h20=diff(L,k7);
h21=diff(L,k8);
h22=diff(L,k9);
solve('h1=0','h2=0','h3=0','h4=0','h5=0','h6=0','h7=0','h8=0','h9=0','h10=0','h11=0','h12=0','h13=0','h14=0','h15=0','h16=0','h17=0','h18=0','h19=0','h20=0','h21=0','h22=0','x1','x2','y1','y2','a1','a2','a3','a4','a5','a6','a7','a8','a9','k1','k2','k3','k4','k5','k6','k7','k8','k9')
Warning:
Explicit solution could not be found.
> In
solve at 81
ans =
[ empty sym ]
L=17*a1*((x1 - 22)^2 + (y1 - 38)^2)^(1/2) -
(40*a2 - 40)*((x2 - 8)^2 + (y2 - 13)^2)^(1/2) - (60*a3 - 60)*((x2 - 5)^2 + (y2
- 81)^2)^(1/2) - (25*a4 - 25)*((x2 - 52)^2 + (y2 - 32)^2)^(1/2) - (30*a5 -
30)*((x2 - 38)^2 + (y2 - 11)^2)^(1/2) - (15*a6 - 15)*((x2 - 16)^2 + (y2 -
12)^2)^(1/2) - (50*a7 - 50)*((x2 - 81)^2 + (y2 - 63)^2)^(1/2) - (8*a8 - 8)*((x2
- 18)^2 + (y2 - 45)^2)^(1/2) - (35*a9 - 35)*((x2 - 62)^2 + (y2 - 12)^2)^(1/2) -
(17*a1 - 17)*((x2 - 22)^2 + (y2 - 38)^2)^(1/2) + 40*a2*((x1 - 8)^2 + (y1 -
13)^2)^(1/2) + 60*a3*((x1 - 5)^2 + (y1 - 81)^2)^(1/2) + 25*a4*((x1 - 52)^2 +
(y1 - 32)^2)^(1/2) + 30*a5*((x1 - 38)^2 + (y1 - 11)^2)^(1/2) + 15*a6*((x1 -
16)^2 + (y1 - 12)^2)^(1/2) + 50*a7*((x1 - 81)^2 + (y1 - 63)^2)^(1/2) +
8*a8*((x1 - 18)^2 + (y1 - 45)^2)^(1/2) + 35*a9*((x1 - 62)^2 + (y1 -
12)^2)^(1/2)
现在对L中的各参数分别求偏导数,并令其为零,得到方程组,我做了是空解,怎么做
syms x1 x2 y1 y2 a1 a2 a3 a4 a5 a6 a7 a8 a9 k1 k2 k3 k4 k5 k6 k7 k8 k9
L=17*a1*sqrt((x1-22)^2+(y1-38)^2)+40*a2*sqrt((x1-8)^2+(y1-13)^2)+60*a3*sqrt((x1-5)^2+(y1-81)^2)+25*a4*sqrt((x1-52)^2+(y1-32)^2)+30*a5*sqrt((x1-38)^2+(y1-11)^2)+15*a6*sqrt((x1-16)^2+(y1-12)^2)+50*a7*sqrt((x1-81)^2+(y1-63)^2)+8*a8*sqrt((x1-18)^2+(y1-45)^2)+35*a9*sqrt((x1-62)^2+(y1-12)^2)+17*(1-a1)*sqrt((x2-22)^2+(y2-38)^2)+40*(1-a2)*sqrt((x2-8)^2+(y2-13)^2)+60*(1-a3)*sqrt((x2-5)^2+(y2-81)^2)+25*(1-a4)*sqrt((x2-52)^2+(y2-32)^2)+30*(1-a5)*sqrt((x2-38)^2+(y2-11)^2)+15*(1-a6)*sqrt((x2-16)^2+(y2-12)^2)+50*(1-a7)*sqrt((x2-81)^2+(y2-63)^2)+8*(1-a8)*sqrt((x2-18)^2+(y2-45)^2)+35*(1-a9)*sqrt((x2-62)^2+(y2-12)^2)+k1*(a1-a1^2)+k2*(a2-a2^2)+k3*(a3-a3^2)+k4*(a4-a4^2)+k5*(a5-a5^2)+k6*(a6-a6^2)+k7*(a7-a7^2)+k8*(a8-a8^2)+k9*(a9-a9^2);
h1=diff(L,x1);
h2=diff(L,x2);
h3=diff(L,y1);
h4=diff(L,y2);
h5=diff(L,a1);
h6=diff(L,a2);
h7=diff(L,a3);
h8=diff(L,a4);
h9=diff(L,a5);
h10=diff(L,a6);
h11=diff(L,a7);
h12=diff(L,a8);
h13=diff(L,a9);
h14=diff(L,k1);
h15=diff(L,k2);
h16=diff(L,k3);
h17=diff(L,k4);
h18=diff(L,k5);
h19=diff(L,k6);
h20=diff(L,k7);
h21=diff(L,k8);
h22=diff(L,k9);
solve('h1=0','h2=0','h3=0','h4=0','h5=0','h6=0','h7=0','h8=0','h9=0','h10=0','h11=0','h12=0','h13=0','h14=0','h15=0','h16=0','h17=0','h18=0','h19=0','h20=0','h21=0','h22=0','x1','x2','y1','y2','a1','a2','a3','a4','a5','a6','a7','a8','a9','k1','k2','k3','k4','k5','k6','k7','k8','k9')
Warning:
Explicit solution could not be found.
> In
solve at 81
ans =
[ empty sym ]