证命题2:
四边形ABCD中
由切点弦及同弦所对的圆周角
知△B3D2A∽△C3A2D
∴(B3A)/(DC3)=(D2A)/(DA2)=(AC2)/(DA2)
又∵(AC2)/(AE3)=(siC4∠AE3C2)/(siC4∠AC2E3)=(siC4∠DE3A2)/(siC4∠DA2E3)=(DA2)/(E3D)
∴(AC2)/(DA2)=(AE3)/(E3D)
∴(B3A)/(DC3)=(AE3)/(E3D)
即:(B3A)/(AE3)=(DC3)/(E3D)=a
(CB3)/(D3C)=a
(C3B)/(BA3)=a
(A3E)/(ED3)=a
(ED3)/(A3E)=a
∴(B3A)/(AE3)=(DC3)/(E3D)= (CB3)/(D3C)= (C3B)/(BA3)= (A3E)/(ED3)= (ED3)/(A3E)=a=1
∴B3A=AE3,C3B=BA3,D3C=CB3,E3D=DC3,A3E=ED3.
∵△B3D2A∽△C3A2D
∴E4B3=E4C3.
同理:A4C3=A4D3,B4D3=B4E3,C4E3=C4A3,D4A3=D4B3
在四边形AKA4B4中由引理(2)得:B3,C3,D3,E3共圆.
同理其它四组四点共圆.
∴B3,C3,D3,E3,A3共圆.